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Japan 
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AbslmcL A formulation lo evaluate equilibrium propflies of a non-simple metallic 
liquid and plasma is presented in a unified fashion involving a neutral liquid as a 
special ose; a multicentre pmblem is to be sohied in a mupled manner with a single- 
centre pmblem in this formulation. A liquid metal or a plasma is taken as a binary 
mixture of nuclei and electrons. Firstly. an inhomogeneous nucleus-electron mixture 
caused by iixing a nucleus at the origin is investigated by the density-functional theory 
for a singlecentre problem lo determine the internal electronic structure of an ion 
at the origin, which enables us to think of a liquid metal as an ion4ectron mixture 
composed of ions with the Same electmnic structure as the central ion so built up at the 
origin. Thus, the radial distribution functions, a self-consistent potential for electmm 
and the ionic charge are obtained, if the bare ion-ion interaction is given beforehand; 
these quantities are used IO solve the following multicentre problem. Secondly, the 
problem of treating a homogeneous nucleus-electron mixture is reduced to the multi- 
cenlre problem of an inhomogeneous c l e c "  gas under the external potential caused 
by randomly distributed nuclei. Thus, this syslem is s h o w  to be regarded as a classical 
onecomponent Euid described by an effective Hamiltonian, with the Same interparticle 
potential as the effective interionic interaction obtained in the previous single-centre 
problem; a bare ion-ion interaction is now created by an extension of the Gordon-Kim 
(GK) or tight-binding bond ( 7 s ~ )  model. This formulation offers a generalization of the 
GK and TBB methods to take account of the presence of the conduction eleclrons with 
use of selfconsistent bound-state functions in a liquid. Here, a bound state is dcfined as 
a State with a negative eigenvalue or a resonant state with a long lifetime. The internal 
energy of a liquid metal is expressed in terms of output fmm the single-centre problem 
based on the nucleus-electmn model. 

1. Introduction 

In the standard approach, a liquid metal is considered as a quasi-one-component 
liquid interacting via an effective potential determined by the electron theory with 
use of a pseudopotential. However, we can not deal with a plasma by this approach, 
since a pseudopotential is not able to be built up in the wide range of temperatures 
and densities within the standard pseudopotential theory. Therefore, it is natural to 
think of a liquid metal or a plasma as composed of ions and electrons. In this point 
of view, there arises a fundamental question of what is an 'ion' in a liquid metal or 
a plasma in a generalized meaning applicable to any metallic system, although in a 
simple metal we have a clear image of an 'ion'. We have no general definition of a 
ionic charge Z, applicable to a non-simple metallic system where the core-electron 
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overlap is non-negligible, and resonant states play an important role to construct 
an ion. In other words, the ionization of a plasma, for example, has not been 
defined in the form applicable for general situations to date. In spite of this fact, a 
liquid metal or a plasma can be modelled as a binary mixture of ions and electrons, 
when the ionic charge 2, and interparticle interactions v i j ( ~ )  are assumed to be 
all hown beforehand. On the basis of the ion-electron model for a liquid metal, 
a set of integral equations for the radial distribution functions (RDF) has been set 
up in the quantal hypemetted chain (QHNC) approximation within the framework of 
the density-functional (DF) theory [l]. There is only a protonelectron system, the 
interparticle potentials vij(y) of which are all known beforehand as an ion-electron 
mixture; the QHNC formulation was applied to a hydrogen plasma with a perfectly 
ionization [2] and to a liquid metallic hydrogen [3]. On the other hand, with the help 
of the DF theory, Dharma-wardana and Pcrrot [4] derived a Set of integral equations 
for the RDFS in a strongly coupled plasma taking the ion-ion correlation in the HNC 
approximation, and applied them to a hydrogen plasma. However, it is shown that 
their formulation cannot deal with a liquid metal or a plasma with significant core 
electrons due to their poor approximation for the electron-ion correlation [SI. 

In order to treat a liquid metal with core electrons by the QHNC formulation for 
the ion-electron mixture, the bare electron-ion interaction v e I ( ~ )  and its ionic charge 
Z, are necessary to be obtained by another method, even when the bound-electron 
core is so small and rigid that the bare ion-ion interaction is taken approximately 
to be purely Coulombic For this purpose, a liquid metal is more fundamentally 
considered as a nucleus-electron mixture, and thus, the expressions for uel(v) and 
2, are obtained to be used in the ion-electron model [6]; this formulation was applied 
to a liquid metallic lithium, and was shown to be capable of giving the liquid structure 
(71 and the internal electronic structure [SI of an ion observed by K-edge position in 
excellent agreements with experiments of Li As a consequence, this formulation is 
expected to be applicable to any other simple metallic system, where the core-overlap 
effect and rcsonant states are negligible. Obviously, the QHNC formulation need to 
be generalized in some points to treat non-simple metallic systems, however. In this 
connection, there is a simple and powerful mcthod proposed by Gordon and Kim [9] 
to evaluate the core-overlap interaction between two atoms or two ion in the vacuum. 
Later on, Harris [lo] extended the Gordon-Kim method to allow a description of 
bonding in general by treating the kinetic energy more exactly than the Thomas- 
Fermi approximation. Honrever, the bare ion-ion interaction in a liquid metal can 
not be derived by these methods, which yield good results only for an interaction 
caused by the bound electrons contained in two atoms in the circumstance where the 
contribution of the conduction electrons is negligible. 

In the determination of the equilibrium properties of a liquid metal or a plasma, 
two types of problems are usually set up: the single-centre and multi-centre problems. 
In a liquid metal, the ion-ion and electron-ion RDFs are identical with the electron 
and ion density distributions around a fixed ion in the ion-electmn mixture; thus, the 
problem to determine the RDFs concerning ion constitutes a single-centre problem to 
evaluate the electron- and ion-density distributions in the inhomogeneous ion-electron 
mixture caused by a fixed ion at the origin. On the other hand, to obtain the density 
of states and thermodynamic quantities such as thc internal energy or the pressure of 
a liquid metal we must struggle with a multi-centre problem of the inhomogeneous 
electron gas produced by randomly distributed ions. In the standard procedure to 
deal with a liquid metal, these two problems are treated quit independently of each 
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other, and their interrelation is not clearly understood even now. For example, at the 
present stage it is a matter of discussion whether the ionization of a plasma should 
be defined by treating the single-centre problem or the multi-centre problem. 

The layout of the present paper is as follows. In section 2 the QHNC formulation 
for the ion-electron mhaure is summarised, and the approximations involved in it is 
explicitly stated to clarify the problem of the QHNC approach to treat the conduction 
electrons. Also, as an approach to treat the boundelectron contribution the Gordoe  
Kim method and Harris' extension are described in conjunction with their limit of 
applicability. In section 3, a formulation to treat a non-simple metallic system is 
presented in a coupled form of the single- and multi-centre problems, and their 
interrelation is considered there. The last section is devoted to a summary and 
discussion. 

2. Previous results and their problems 

2.1. The ion-electron model and simple metallic systems 

Usually, a liquid metal or a plasma is taken as a mixture of ions and electrons. ?b 
get a clear meaning of an ion-electron mixture, let us consider a binary mixture 
consisting of one kind of ions with a definite ionic charge Z, and the conduction 
electrons, interacting with each other via binay potentials v i j ( r )  [i, j = I  or e]; the 
ions are assumed to behave as classical particles in the sense that their coordinates 
Ri and momenta Pi are commutable, while the conduction electrons form a quantum 
fluid, and are clearly distinct from the bound-electrons forming an ion. Then, we can 
think of this mixture as a model for a liquid metal or a plasma with uniform density 
ni and electron density n; = 2,n; [referred to as the ion-electron model]. In this 
model, the ion-ion and electron-ion RDFs, glr(r) and se,(.), are identical with the 
ion- and electron-density distributions, n,(rlI)/nL and ne(.II)/n;, around a fixed 
ion in the mixture, respectively. Since an ion fixed at the origin causes external 
potentials U ; ( r )  = u i I ( ~ )  acting on ions (i =I) and electrons (i =e), the RDFS 
become equal with the inhomogeneous density distributions ni ( r l {U ,  = u, , } ) /n& 
under external potentials U i ( r )  = u i l ( r )  applied to the homogeneous ion-electron 
mixture 

gdr) = n;(.lI)/nb = .i(.lcU,=~,Il)/nb . (2.1) 

These relations can be proved by using the fact that the ions are classical particles 
in a similar manner that Percus [ l l ]  derived the above relation for a pure classical 
liquid (see the appendix for details). 

The above fundamental relations (2.1) give a clue to the evaluation of the RDFS on 
the basis of the DF theory [l], which can afford to give exact expressions for the inho- 
mogeneous density distributions ni(rlU,U,) induced by external potentials {UI, Ue} 
applied to the homogeneous mixture. In the DF theory, the effective external poten- 
tials to evaluate the density distributions ni(rlUIUe) under the external potentials 
Vi(?-) are defined in such a way that the density distributions nP(rlUf") of noninter- 
acting systems under effective external potentials U;" should become identical with 
the density distributions ni(rlUIUe) of the real system: nP(r1U;") E nr(rlU,Ue) , 
and are shown to be given exactly by U;"(r) = U ; ( ~ ) + 6 ~ " , , , / 6 n ; ( r ) - p L : " ~  in te rm 
of the interaction part of the intrinsic free-energy Fin,,, and pyt pi -pp.  Here, pi  
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and p! are chemical potentials of interacting and noninteracting systems of i-kind 
particles, respectively. In this way, the DF theory can reduce exactly a many-body 
problem to determine the density distribution n;(rlUIUJ of the interacting mixture 
in the presence of the external potential {Ui, U<) to a one-body problem to calculate 
the density distribution np(rlUFff) in the noninteracting particles under the effective 
external potential U;'(,). As a result, the DF theory provides the formal, but m c f  
expressions for the RDFS Sir(') conceming ion as follows [3] 

with 

in terms of the bridge functions BiI(v)  and the direct correlation functions (DCF) 
Cij (7). Here, np(rlUi) denotes the density distribution of the non-interacting par- 
ticles of kind i; n:(vlU,) = n : e x p ( - P U , ( r ) )  for ions, while the non-interacting 
electron density n,"(vlU,) can be determined by solving the wave equation for an 
electron under the external potential Ue(v). In the above expression, the DCF Cij (v) 
in the ion-electron mixture are defined within the framework of the DF theory by 

where the s u k  0 denotes the functional derivative at the uniform dcnsities [I]. 
Actually the explicit expression for the DCF are given by the Fourier transform in the 
matrix form 

m C ( Q ) f l = ( j i $ ) - ' - ( Z Q ) - '  (2.6) 

in terms of the density response functions, jiQ X , ~ ( Q )  11 and ?$ x0'(Q)6,,  11, 
of  the interacting and non-interacting systems, respectively, with nb6ji 11. 
This relation results from (2.5) by noting that the densityaensity response functions 
x,, (Q) are defined by 

with 6 b i ( Q )  = C c e x p ( i Q . i . f ) - N , 6 Q , 0  and the total number Ni of i-kind particle. 
Here, FQ [f(r)] sJe'@'f(r) d r  and ( X ; Y )  is the canonical correlation defined 
by Kubo [12] 
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with the total Hamiltonian H and the total number operator NTi of the kind i particle 
Note here that the density-density response functions xiI(Q) concerning ion be- 

come identical with structure factors S;,(Q) and xo'(Q) = l, since the canonical cor- 
relation reduces to the usual correlation: (6Bi(Q);6pi(Q)) = (&&(Q)6$(Q)) = 
S i I ( Q ) m ,  because of [fi;, hi] = 0 in the canonical correlation (2.8) if the ions 
behave as classical particles. Therefore, the structure factors concerning ion in the 
ion-electron mixture can be described in terms of the DCF Cij(Q) from (2.6) 

SdQ)  = [I- nF.,(Q)x$ I/o(Q) (2.9) 

where 

(2.11) 

(2.12) 

D(Q) I1 - n'oCIr(Q)II1 - niC,,(Q)~$l -n'on"oCer(Q)12~$ (213) 

with x$ = xoe(Q). At this point, it is interesting to note that the inverse Fourier 
transform of (2.11) leads to the relation: 

nEseI(r) = p(T)  + ni j p ( l 7  - +l)gII(+-' (2.14) 

which states that the conduction-electron distribution n;ge1(r) around the k e d  ion in 
the ion-electron mixture can be described exactly by the superposition of surrounding 
'neutral pseudoatoms', each of which carries about a screening cloud p ( r ) .  Also, the 
Omstein-Zemike (oz) relations in the ion-electron mixture are obtained from the 
inverse Fourier transform of the matrix identity 

(?Q)(?$)-' - 1 = ( ,T$)mC(Q)dZ+ (,T$)mc(Q)~((,TQ)(~$)-'- 1) 

in the forms 

(2.15) 

(2.16) 

where denotes an operator defined by FQ[Emf(r)] (x$)"Je'Q,ff(r)dr for an 
arbitrary real number OL. Finally, the RDFS are written in the forms related to (2.15) 
and (2.16) 

SJT) = expI-Pv,,(r) + rrdd + 41(r)I 

gdT) = 4.I - reI/P - B,I/P)/n; . (219) 

(218) 
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In practice we can think of the ion-electron mixture as a quasi-one-component fluid 
interacting via an effective interaction veff(r).  If this effective potential u e f f ( r )  is 
defined in such a way that the ion-ion RDF SI,(.') should be equal with the RDF g( r )  
of the quasi-one-component fluid, the expression for veR( Q) is shown to be in the 
Fourier transformed form: 

(2.20) 

=Pvri(Q) - cdQ)dQ) (2.21) 

when the bridge function of one-component system is chosen to be Bll(r) of the 
mixture. 

All the above equations (2.1)-(2.21) are exacf expressions, although formal ones, 
within the framework of the DF theory applied to the ion-electron mixture, provided 
that the ions are taken as classical particles and the ion-ion and electron-ion inter- 
actions are binary. It is worth pointing that the above equations express the following 
important facts: 

(A) We can describe a liquid metal or a plasma always as a oneamponent 
fluid interacting via a painvire potential (2.20) obtained by a local pseudopotential 
-C,,(Q)/p in the determination of the RDF gIl(r), and need not introduce many- 
body forces, if the binary ion-ion interaction vn(r )  is given beforehand in the ion- 
electron model. This can be seen by noting that the DF theory reduces the many-body 
problem to determine the ion-density distribution r&(r) around a fixed ion in the 
mupled ion-electron mixture to the single-centre (one-body) problem to evaluate the 
non-interacting ion distribution under the effective one-centre external potential as 
(2.18) reveals. However, if we want to determine an ion-ion interaction v,,(r), the 
many-centre (at least, two-centre) problem must be solved for the case where the 
overlap of core-electrons is significant, as will be discussed later. 

(B) The conduction-electron distribution n;ge,(r) around a fixed ion in the ion- 
electron mixture is eracfty represented by the superposition of surrounding pseu- 
doatoms, irrespective of the strength of an electronion interaction, as is shown by 
(2.14). Therefore, the conduction-electron distribution fie( r )  at arbitrary position r 
in the mixture may be described by the superposition of the pseudoatoms randomly 
distributed at {I&) in such a way as A J r )  = C , p ( ~ - f i , ) .  It should be remem- 
bered that (214) is based only on the premise that the ions constitute a classical fluid, 
and does not depend on the ion-ion interaction being binary. As a consequence, we 
can say that Z i a n ' s  neutral-pseudoatom model is always valid irrespective of the 
strength of an electron-ion interaction for any liquid metal where an ion-ion inter- 
action becomes even a many-body force, provided that the system can be taken as an 
ion-electron mixture and the ions behave as classical particles. 

In the ion-electron model where we know only the electron-electron interaction 
we(.) to be a pure Coulombic u&(r) l/r, knowledge of many quantities is 
necessary for arriving at a set of closed integral equations for the RDF Sir(?) from 
the above equations; the ionic charge Z,, the electron-ion interaction ve,(r), the ion- 
ion interaction vII(r), the electron-electron DCF C,,(r), which is described by the 
local-field correction (LFC) C(Q) in the form of CJQ) = -Pv&(Q)(l - C(Q)), 
and two bridge functions Bil(r). In a liquid metal, (i) the LFC G(Q) is surely 
replaced by that of the jellium model and (ii) the electron-ion bridge function can be 
neglected (this approximation is called the hypemetted-chain (HNC) approximation), 
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while (E) the ion-ion bridge function BII(r )  can be approximated by that of Percus 
-Yevick equation for the hard spheres in the spirit of the modified HNC equation 
1131. In an attempt to get definite expressions for the electron-ion interaction ve,(r) 
and ionic charge 2, from the atomic number Z,, we viewed a liquid metal more 
fundamentally as a mixture of nuclei and electrons, and derived (iv) ueI(r )  in the 
form 

G J T )  =--+ v ~ ~ ( l r - r ' l ) n ~ ( r ' ) d r ' + ~ ~ C ( n ~ ( ~ ) + 7 1 ~ ) - - x c ( n ~ )  (2.22) 

and (v) 2, = Z,-Jnt(r)dr ,  which are determined in a self-consistent manner by 
coupling with the ion-elecnon model 161; the RDF n;ge,(T)  and the bound-electron 
distribution TI:(.) of a constituent ion are determined at the same time by solving 
the wave equation for an electron under the external potential U:;(?) of (2.4). In the 
above, pxc(n,( T ) )  denotes the exchange-correlation potential and vfj ( T )  indicates 
a pure Coulombic potential between i-j particles. The DF theory applied to the 
nucleus-electron model remains the ion-ion interaction as undetermined. Therefore, 
we assume the ion-ion interaction vrI(r) to be a pure Coulombic potential between 
ions: (vi) u,,(T) = Z,"/r vi,(?-). With the aid of these six approximations, we 
obtain a set of closed integral equations for RDF Si,( r) in a liquid metal with the 
atomic number 2, as the only input: an application of these integral equations to a 
liquid metallic lithium [7] shows to give structure factors in good agreement with the 
experiment However, the Coulombic approximation (vi) to ut,(.) restricts its validity 
for a system where the ions are so small and rigid that the overlap of core-electrons 
is neglected. On the other hand, the definition (v) of 2, is based on an implicit 
assumption that the boundelectrons are clearly distinct from the freeelectrons: thus, 
a resonant state, which contains a strongly localized contribution, cannot be treated 
by this approximation. Hence, the applicability of this set of integral equations 
with six approximations is limited to 'simple metallic' system, where the overlap of 
core-electrons is small and no significant resonant state appears. It is, however, 
important to realise that this restriction does not comes from the ion-electron model, 
but is ascribed to the approximations introduced to obtain closed integral equations. 
Actually, we can treat 'non-simple metallic' system within the ion-elcctron model 
as will be shown later, if the definition of ionization 2, is extended to involve a 
resonant state, and the ion-ion interaction v,[ (T)  are determined by taking account 
of the core-electron overlap. In this respect, we notice that the overlap interaction 
between atoms or ions with the closed-shell electrons can be calculated by a simple 
but extremely useful method proposed by Gordon and Kim 191, which is summarised 
in the next subsection along with its variations. 

2.2 The Cordon-Kim model and its generaluarion 

According to the DF theory, the total energy of a system consisting of N nuclei with an 
atomic number 2, and Z,N electrons is written in the adiabatic approximation in 
t e r m  of the electron density distribution h,(r) around nuclei fixed at {R, . . . RN}: 

T J 

E t o t I f i e I R ,  " . R N I  = 7x%l + E X & J  + E,I%1 (2.23) 



8722 J Chihara 

where the electrostatic energy of this system is given by 

&(I. - r’l)iLe(r)iLe(r’) d r  dr’ E,[iL,] 5 - 2 ‘J 
(2.24) 

and K[iEe] and ExC[iE,] denote the kinetic and exchange-correlation energies, re- 
spectively, with Rap = R, - Rp. The DF theory states that the electron density 
distribution iLe(r) can be obtained by solving the wave equations 

for an electron under the effective external potential: 

However, it is not so easy work to solve this multi-centre problem self-consistently. 
lb circumvent thk difficulty, Gordon and Kim [9] assumed that the electronic charge 
density he(?-) can be approximated by a superposition of charge densities p, , ( r )  of 
free atoms even for the overlap region of atoms: 

N 
iE,(r) = &r) = C p , ( r  - R,) = C p p ) ( r )  . (2.27) 

*=1 CI 

Then, the total energy is written approximately in the form 

Em[kelRi . . .RNI e AT,[& + AExc[nll +&E, + N ~ , t , ,  (2.28) 

which comprises the total energy of N atoms with 

and the difference of the kinetic, exchange-correlation and electrostatic energies from 
those of N atoms, as written respectively in the following 

N 

(2.30) 

(2.31) 

(2.32) 
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with Z,,(r) ZAS(r) - Pa(r). Therefore, equation (2.28) applied to the two-nuclei 
system generates an interaction potential v( r )  between two closed-shell atoms in a 
free space as follows 

- % I )  AT[d lRi%l+  AExddlRiRzl 

(2.33) 

When we adopt the local-dewily approximation (LDA) to the kinetic energy T, in 
addition to the exchange-correlation energy Exc, the above equation was shown to 
give a simple but good evaluation of the atomic interaction [ 141. 

In general, the LDA is not so a good approximation when applied to the kinetic- 
energy functional in mntrast with the exchange-correlation energy, which can be 
fairly well described by the LDA In this respect, Harris [IO] extended the Gordo+ 
Kim approach to allow a description of bonding in general, not restricted to inert 
atom interaction, by treating the kinetic energy in the KohnSham manner [15] rather 
than in the U).& Exactly to obtain the kinetbenergy T,[h,], the wave equation (2.25) 
need to be solved self-consistently: that is, the self-consistent potential weR(rlh,) 
is required for the wave equation (2.29, which is solved iteratively to achieve self- 
consistency. In the Harris approach, this self-consistent potential is approximated by c (r) veR(rln!), where the total electron density distribution he(r) is replaced by 

of the Gordon-Kim scheme; then, the approximated self-consistent Hamiltonian 
is mitten as 

a, F (T), the superposition of electron-densities of isolated atoms as was done in (2.27) 

(2.34) 

- 
with H l n )  = Fnln). In this way, the expression for the change in the kinetic energy 
as the atoms are condensed to form a liquid, is derived as 

(2.35) 

(2.36) 

(2.37) 

Here, E?) denotes the energy level associated with single-centre potential of a-site 
and I(.) l/[exp(p(e-p;))+l]. On the basis of the equation (236), Sutton 
et a1 [16] have presented the tight-binding bond (TBB) model [16, 171 of cohesion 
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and interatomic forces; there, the kinetic energy term is described by tight-binding 
approximation with use of atomic orbital functions. 

There are several problems to be investigated concerning the Gordon-& 
method and the Harris extension. (i) This method does not take account of the 
presence of free electrons which can not be approximated by the tight-binding ap- 
proximation; therefore, the core-core interaction in a liquid metal or a plasma can 
not be treated by this method. (U) The superposition of electron densities of isolated 
atoms may not be good approximation for a high-density plasma or a liquid metal, 
where the free electrons plays an important role in the determination of electronic 
structure. (E) Then, other than atomic electron densities, what electron density 
pT( r )  can we use to superimpose in a better representation of real electron den- 
sity fi,(r) under the extemal potential caused by many tixed nuclei by the form: 
.E(.) = pT(r - R,)? (w) How can we obtain self-consistent base functions 
in the tight-binding approximation applied to (236), especially for a plasma? 

3. Formulation 

3.1. The single-centre problem 
A liquid metal or a plasma can be more fundamentally considered as a nucleus- 
electron mixture consisting of NI nuclei of charge 2, and Z,NI electrons. Here, we 
single out one nucleus and fix it at the origin; then, fixing a nucleus in the mixture 
induces an inhomogeneous system under the external potentials caused by the fixed 
nucleus at the origin. This model can be equivalently translated into a simpler system; 
an inhomogeneous coupled ion-electron mixture, which consists of (NI - 1) ions 
interactingvia a potential uII(r) and ZI(NI-l)+ZA electrons, with one fHed nucleus 
at the origin. Here, the ionic structure and its ionic charge Z, are to be determined in 
a self-consistent manner. Hence, the nucleus- and electrondensity distributions in the 
nucleus-electron mixture with a tixed nucleus at the origin become identical with the 
ion- and electron-density distributions, ni (  rlN), in the inhomogeneous ion-electron 
mixture in the presence of external potentials, UI(r) = w I N ( r )  and U,(?-) = uZN(r), 
for ions and electrons caused by the fixed nucleus at the origin, where qN( r )  is 
unknown atathis stage although the electron-nucleus interaction uZN(r) is surely a 
pure Coulombic -ZAfr.  As a consequence the DF theory can be applied to this 
system by taking as a reference system [l] a mixture composed of (NI - 1) non- 
interacting ions and &(NI - 1) + 2, non-interacting electrons; each ion is assumed 
to have 2, boundelectrons with a distribution p b ( r ) .  Hereafter, this reference 
system will be referred to as the average-ion model, of which intrinsic free energy is 
represented by 

T - - 

where f,b[pb] denotes the free-energy of bound electrons in an ion, G[n,(rIN)] 
is the intrinsic freeenergy of non-interacting electrons, and X indicates the thermal 
wavelength of ion. Therefore, the thermodynamic potential SI of the system is written 
in the light of the average-ion model as 

nl(rlN)1n[nl(rlN)X31 d+ + (4 - I)f,6[Pt,l +G[ne(TIN)1 ( 3 4  
O -  P ' J  
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with the interaction part of the intrinsic free-energy 3iFint E 3- F,, that is the differ- 
ence of the intrinsic free energy between real and non-interacting systems. The DF 
theory afford to give the exact expressions for ion- and electron-density distributions 

nx(rlN) = ":,exP[-Pv%(r)l (3.3) 

n,(rlN) = n:(rluzc) = n!(rIN) t n:(rlN) (3.4) 

with effective external potentials (i =I or e) defined in t e rm of Frit as follows: 

Here, n: and n: denote the bound- and conductionelectron distributions around 
the fixed nucleus, respectively. If we sit on the nucleus fixed at the origin, we can 
see a world where some bound electrons go round it and the free electrons are 
accumulated as described by (3.4), and the ions are pushed away from it according 
to (3.3). Since we can see the same world viewed from the nucleus fixed at the origin 
even if we sit on any ion in the reference system, the bound electrons around the 
nucleus at the origin should be taken to constitute an ion around the origin, which 
is the same density distribution p b ( r )  of the reference ion in the premise; thus, we 
obtain a self-consistent condition to determine p b ( r )  and 2,: 

P d r )  = n,b(+J) (3.6) 

and hence 2, 3 Jn:(rlN)dr. At this stage, however, we does not describe a 
criterion to discriminate between bound and conduction states: 'bound' states will 
be defined later. From the above fact, we can take the interaction vIN(r) between 
the central nucleus and a surrounding ion to be identical with the interaction uII(r)  
between two ions: qN(r) = uI , (r ) ,  since the central nucleus has the same bound 
electrons forming an ion to that of other ion in the reference system. For the 
purpose of obtaining a tractable formula for v$(r) ,  we approximate the chemical 
potential involved in (3.5) in the form (for a detail derivation, see [6]): 

(3.7) 

in terms of the DCFS defined by (2.5). Henceforth, the effective electron-nucleus 
interaction is obtained as 

= v,"( r)  
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which is identical with the electrodon interaction vE(r )  of (24) with the bare 
electron-ion interaction GeI(r) given before by (222). On the other hand, the effeo 
tive ion-nucleus interaction v;z(r) is now considered to be equal with vftff(r) 

U;;(?-) (3.10) 

as is shown by (2.4) in the ion-electron model because of v I N ( r )  = vrI(r ) .  Hence, 
the above equations, (3.8) and (3.11), show that the nuclewlectron model with the 
average-ion reference leads to the ion-electtun model, where the electron-ion inter- 
action (2.22) and the boundelectron distribution p b ( r )  are given in a self-consistent 
manner. 

The electronion RDF ger(r) should be identified with the conduction electron 
distribution n:(rIN)/nQ since the bound electron part .:(PIN) constitutes an ion; 
thus, in the nucleus-zlectron model there follows the similar relation to (2.11): 

S,,(Q) = @FQ[n:(r[N)/n: - I]  = - ’2 SII( Q )  (3.11) 

with 

(3.12) 

It should be noted that the bare ion-ion interaction vlI(r) remains an undetermined 
quantity in the nucleus-electron model. ?b achieve an expression determining vII(r), 
we have to couple the above results with a multioenter problem as will be mentioned 
in the next subsection. In this respect, it should be kept in mind that the nucleus- 
electron model provides the total electron distribution, including the bound electrons, 
around the tixed nucleus in the form: 

(3.14) 

as is seen from (3.11). This relation suggests that the electron distribution under 
the external potential mused by the nuclei randomly distributed at {E,] may be 
represented by a superposition of neutral pseudoatoms with a distribution 

P p d r )  = Pb(r )  + P,(F)  (3.15) 

in the form 

(3.16) 
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Here, 

?z:(r) p c ( r  - r')?zI(r') dr' J 
(3.17) 

(3.18) 

where a,(?-) denotes the microscopic nuclear distribution: ?z,(r) E ~~~, 6(r-Ra) .  
This approximation forms the starting point for a study of the multi-centre problem 
to determine the electronic structure and the thermodynamic properties of the system 
in the presence of randomly distributed nuclei at { R I . .  . RN}. 

3.2. The multi-centre problem 

As was discussed in the previous subsection, we consider an interacting system of 
N nuclei and ZAN electrons forming a liquid metal contained in a volume V at 
temperature T = l/kBp: the Hamiltonian of the system is written as 

H = H" t H e t  HeN (3.19) 

where 

(3.20) 

(3.21) 

(3.22) 

In the above equations, Rm and Pe denote nuclear coordinates and momenta, and 
ii and pi refer to the electrons with the nuclear and electron masses, A4 and m, 
respectively. Since the nuclei behave as classical particles, we can consider their co- 
ordinates and momenta to be commutable: [ko,pe] = O. As a result, the canonical 
partition function of the system can be written in a factorised form: 

ZN E Trexp(-PB)  = Tr[eXp(-PHNN)exP(--P(H~,  fie^))] (3.W) 

which reduces to the canonical partition function for a classical one-component fluid: 

(3.24) 
Z N =  - / d R , d R , . - .  1 d R N d P , d P , . . . d P N e x p (  -PI€,,) 

N! h3N 

with an effective Hamiltonian for interacting N classical particles 

HeR = HNN t <(RI . . . R N )  (3.25) 
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where Fe is delined by 

exp[-PF,(R, . . .RN)I s Tr,exp(-P(& +  fie^)) (335) 

and plays a role of a many-body interaction among particles. Since Fe is essentially 
the free-energy of the electrons under the external potential caused by nuclei k e d  
at {R,} ,  it can be represented in terms of the electron density iEe(r) on the basis of 
the DF theory: 

F,(R, . . . R,) = F,[iL,IR,. . . R,] = F,[iL,, iL1] 

= F 0 [ 4  + FXC[iLe, fill + 5 v&( lr - r'l)iLe(r)iLe(r') d r  dr '  ' J  
+ k(T)v:N(lr  - %l)dr . 

Thus, the effective Hamiltonian HeR can be rewritten as 

(3.27) 

Here, the electrostatic energy E,, is defined by (2.24). 
We are now in a position to rewrite the effective Hamiltonian (3.28) in a tractable 

form on the basis of the superposition approximation (3.16). In the first place, 
the electrostatic energy E, of (224) is shown to be rewritten after some tedious 
calculation in the form representing the conduction-electron and bound electron con- 
tributions explicitly 

+ JF7  '' (ni)z[jr,I(r - r ' )  - I l d r d r '  

with Z l ( r )  E ZA6(r )  - p b ( r )  and 

.e,(lr-r'I)Pb(r')dr'. (3.30) 
T 

In the above equation, 6iL3r) iLE(r) - n; and 6iLI(r) E iLI(r) - nb denote the 
deviations of the conductionelectron distribution and random ion-distribution from 
their uniform densities, respectively, and 

( ~ ~ ) 2 [ g r I ( ~  - 7') - 11 E 6fiI(r)6iL,(r') - c 6 ( r  - R,)S(r'- R,)  (3.31) 
0 
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the configurational average of which generates the RDF (n:)’[grr( I f  - r’l) - 1). The 
above expression (3.29) for the electrostatic energy can be obtained from (2.24) by 
adding and subtracting a neutralising background n+(~) = C,pb(r -RQ)  at the 
first time, and secondly the neutralising uniform positive background n; , and the 
following relation is used in the derivation of (3.29): 

(3.32) 

On the other hand, the exchange-correlation part of free-energy of electrons is as- 
sumed to be divided into the three parts: the bound electron and conduction-electron 
terms and their coupled term, as described by 

Fxc[fiJ = Fxclfi.lRi .. .RNI = Fxc[fi., hi1 

= FxcIfi9 + Jirxc(Ir - Ral)fi:(r)6r + FXC[fi:,fiIl (3.33) 
b 

with 

Fxc(r) PXC(Pb(F) + a;) - Pxc(n3 . (3.34) 

The conduction-electron part of Fx, is approximated by the functional-expansion 
around uniform densities to the second order: 

62Fxc I 6 A ~ ( r ) 6 f i I ( ~ ’ )  dr  dr’ 
+ J 6fi:(r)6fil(r‘) (3.35) 

(3.36) 

In the above, we introduce a further approximation by the following replacement to 
associate with the DCFS Cij(r) G CF(r)--pvi j (r)  

(3.37) 

which implies that the functional-derivative of Fxc of the electrons in the pres- 
ence of randomly distributed nuclei is replaced by that of the exchangecorrelation 
freeenergy of the ion-elemon mixture. Here, the electrondensity functional 
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Fxc[A,JR, .. .RN]  of one-component system is thought of as the two-component 
functional of the electron-density iLe(r) and the random ion distribution R I ( r ) ,  since 
the nucleus number N is so large that we can treat the nuclear distribution iLI(r) 
statistically. Also the conduction-electron part of FO[iL,] = Fo[iL2] + F,[iL:] in (3.28) 
is approximated by the functional-expansion around uniform densities to the second 
order: 

(3.38) 

= F0[n3 + g / C e ( I r  1 - r‘1)6iL:(r)6iL:(r‘)dr dr‘ 

Ce,(lr -r’1)6iL~(r)SAl(r’)dr dr‘ . (3.39) 

In the above derivation of (3.39), the Superposition approximation (3.18) with neutral 
pseudoatoms (3.12) is used in conjunction with the relation 

(3.40) 

Consequently, by the combined use of (3.39), (3.29) and (3.33) with (3.36), the 
effective Hamiltonian (3.28) can be altered to read 

+!m ’I” (ni)2[tjIl(~ - ~ d )  - 11 drdr‘  

(3.41) 

(3.42) 
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and 

GG(Q = 0 )  E G e I ( r )  + 1 d r  = -- 2n / pb ( r ) r ad r  + /fix,(.) d r  . (3.45) J (  " >  r 3 

In the above, we made the following approximations: 

F0[+2l = I Fxc[fel= ExcIel (3.46) 

since the electron density is so high in the core-region that the temperature effect 
can be ignored. Furthermore, this effective Hamiltonian is rewritten in a simple form 

(3.47) 

where 

with 

(3.49) 

Finally, if the core-overlap interaction can be represented as a sum of a binary 
interaction 

(3.50) 

the effective Hamiltonian (3.28) for a classical quasi-one-component fluid is written 
in the form 

in terms of the effective ion-ion interaction defined by 

(3.51) 

(3.52) 
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with 

(3.53) 22 
+jII(r) 3 f + v,,(r) . 

It is important to realise that this effective interaction is in essence the same to 
(2.20) given by the previous single-centre formulation except that the bare ion-ion 
interaction GI,(?) is now generated by the use of (3.50). Also we stress here that the 
equation (3.50) gives rise to an extension of the GK method to determine the ion-ion 
overlap interaction in the presence of conduction electrons. Now, for example, the 
internal energy of a liquid metal, where the conduction electrons are assumed to be 
perfectly degenerate, is given by 

E = (He=)  = #Nn: 1 veR(r)[gII(r) - 11 d r  + $Nuind(r = 0) + ~ N n ~ v , , ( Q  = 0) 

t N ~ : G ~ ( Q  = 0) + ~,[n,el t ~ ~ ~ [ n ; ]  

t $k,TN t Nei,, (3.54) 

This expression is an extension of a formula for the internal energy derived previously 
1181 to the case of a liquid metal with core electrons 

At this point, let us apply the Harris formulation [lo] to evaluate the core-overlap 
interaction by (350) without use of the LDA to T.. As a first step, the effective 
external potential ueR(rIA,) in the DF theory is expressed in the form avoiding an 
iteration process to set up a self-consistent potential 

uen(rlfi,) %drld) 3 V,, - (M) (TIR, " . R N )  (3.55) 

by means of the superposition approximation (3.16). Thus, a new output of bound 
electron density h y t ( r )  is obtained as 

(3.56) 

by solving the wave equation: 

Consequently, the kinetic-energy difference ATs[&;] is expressed with the aid of 
(3.56) in terms of new energy levels Zi  in the form 

(3.58) 

(3.59) 
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where @(rlu)  is a single-centre potential at u-site as discussed in section 3.1 
and qy)(r) is a multi-centre potential which is assumed now to be given by the 
superposition of the muffin-tin potential without overlap, as described respectively by 

V!,S’(rla) uzg(lr - R,I) (3.60) 
h, 

(3.61) 

At this stage, if we determine the muffin-tin potential u M T ( ~ )  to fulfill the condition 
that S(i2,)/6pP,(r) = 0, which results from the fact that the real electron-density 
fie(v) ought to be an extremum of the thermodynamic potential ne 5 Fe-peNe, the 
muffin-tin potential uMT(v) is shown equal with the single-centre effective potential 
with use of some approximations 
V M ~ T )  FJ G ( T )  

(3.62) 

Due to (3.62) the third term in the right-hand side of (3.58) disappears ultimately, 
and the kinetic energy difference is expressed in a simple form 

AT.[i.{] = f(Z& - f(ei*))cp’ 
N 

“€bound a=l n€bound 

(3.63) 

where nf,(  c) is a local-density of states on the orbital e at u-site in the tight-binding 
approximation. On the other hand, the exchange-correlation energy in (3.50) is 
witten in the cluster expansion 

+1 3! (...)+.. 
4 B f 7  

(3.64). 

Retaining the binary term only in (3.64). we end up with a formula to determine the 
core-overlap interaction in the TBB model [16, 171 

A W 4 l f  A%,,I”’bl 

(3.65) 
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where ure.,(.) is a short-range repulsive potential provided by the exchange- 
correlation and electrostatic contibutions as follows 

% p ( R ~ s )  E EXCIPb(r-R~)+Pb(r-Rg)l - E x c [ ~ t , ( r - R a ) I  - Exc[Pb(r-Rp)]  

(3.66) 

3.3. The relation behveen the single- and multi-centre problems 
When the DF theory is applied to the single-centre problem of a coupled nucleus- 
electron system with a fixed nucleus at the origin, the ion-ion and electron-ion RDFS 
are determined in conjunction with the bound electron distribution p b ( v ) ,  the muffin- 
tin potential vMT(r) = @(.) of (3.62) and the DCF CeI(r),  which are necessaly as 
input data to investigate the multi-centre problem. Next, with use of these quantities, 
the DF theory can deal with the multi-centre problem to determine the electronic 
strueture in the presence of randomly distributed nuclei: also, the effective Hamil- 
tonian for a quasi-one-component classical fluid, the core-overlap intcraction, the 
thermodynamic quantities and the density of states can be evaluated at this process. 
Note that the single-centre and multi-centre problems are coupled with each other; 
the core-overlap interaction (3.50) produces a bare ion-ion interaction (3.53), which is 
used as an input to the single-centre problem as discussed in section 3.1. The electron 
density distribution n,(rlR1 . . . R N )  in the presence of randomly distributed nuclei 
at {R,] is represented by the Green function for this system 

(3.67) 

The configuration-averaged electron density (n(r lR1. .  . R N ) ) R , = O ,  under the con- 
dition that a nucleus is fixed at the origin, should be equal with the total electron 
density around a k e d  nucleus n'r(rlUe,, = --ZA/.) calculated from the single-centre 
problem: 

nT(VlN) ne(t'lueXt = -zA/v) + 120 P b ( t -  r')gtI(r') dr' ' J  
(3.68) 

It may be physically ascribed to (3.68) that the effective potential v $ ( v )  of (3.9), 
derived in the single-centre problem, becomes at the same time a self-consistent po- 
tential for the multi-centre problem in the summing form of muffin-tin potentials for 
each nucleus, since the muffin-tin potential at the origin should be a functional of 
the density distribution (n(rlRl ' .  .RN))RI=O. In addition, there is another relation 
between single- and multi-centre quantities: the bound electron number 2, deter- 
mined by the single-centre problem is equal with that evaluated by the use of the 
local density of states obtained in the multi-centre system 
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which is assumed also in (3.63), where 'inner core' implies inner bound levels almost 
unaltered both for single- and multi-potentials. Therefore, the ionization can be 
considered to be defined by both single- and multi-centre problems; both definitions 
should give the same ionization when two problems are solved in a self-consistent 
manner. 

The structure of a neutral liquid can be investigated by solving coupled single- 
and multi-centre problems; a formulation for a neutral fluid is obtained by takiog 
limit of the eonduction-electron number zero in the previous result By taking this 
limit of the DCF C,,(r), we obtain the relation 

E @Gea(r) . (3.70) 

Thus, the bound electron distribution of a neural atom in a liquid is obtained in the 
form 

(3.71) n,"(r) = pa(.) = n:*(rIv::) 

by solving the wave equation for the potential vzz(r), which results from the limit 

(3.72) 
np.0 

Hence, the atomic interaction is determined by using p , ( r )  so obtained to express 
the electron distribution nf by the superposition, nf(r)  = E,",, p a ( r - i Z n ) ,  which 
is inserted in the GK formula as follows 

J lim veN(r) eff = U::(.) E Gea(r) t Gea(lr - r'l)no[g(r') - 11dr' . 

(3.73) 

Once the interatomic potential is determined by (3.73), the RDF is finally represented 
by 

s(4 = exp[-P.,,(T) + 7 ( ~ )  + B ( r )  1 (3.74) 

in terms of the bridge function B ( r )  and y ( r )  3 no J C(Ir-rr1)[g(.')-l]dr', which 
is related to the 02 relation, g(r)-1 = C(r)+y(r ) ,  with the DCF C(P).  It should 
be noted that the atomic electron density p , ( r )  is not the bound electron density of 
a freeatom, but of the atom immersed in a liquid as described by (3.71): equations 
(3.71), (3.73) and (3.74) must be solved self-consistently as a coupled problem of 
single- and multi-centre systems. This approach makes contrast with the method 
of Senatore ef a1 1191, who determined p,(r)  in treating the multi-centre problem. 
However, it should be remembered here that the GK method does not give the van 
der Waals tail of potential: to produce it, an additional procedure [20] is necessary 
to combine with the GK method. 
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3.4. The defrnitwn of ionization and resonant slates 

When a liquid metal or a plasma is taken as a binary ‘ion’-electron mixture, the ionic 
charge 2, should be defined so as to satisfy a general relation 

- w , , ( 0 )  = &Se,(0) (3.75) 

which results from (211). By the inverse Fourier transform, this equation is rewritten 
in the form 

Z, = n: J(geI (  T) - 1 )  d r  - ZIni J [ g I l [  r )  - 1) d r  = ZA - Z, (3.76) 

which states that an ion fixed at the origin keeps the charge neutrality hy accumulating 
the conduction electrons and by pushing away the ions around it in the whole space, 
not within the WignerSeitz cell. From the view point of the DF theory, the tixed 
central ion in a liquid metal produces an external potential of single-centre, while a 
f ied ion in a solid induces a multi-centre extemal potential; that is, all other ions 
are considered to be fixed together and to contribute to the formation of the external 
potential. Therefore, in a solid the space is to be divided into the Wigner-Sei& cells 
corresponding to each ion; in contrast with this situation, in a liquid thc fLved ion 
has the whole space as its world in the determination of electronic structure and 
ionic configuration, without being confined in the WignerSeitz cell. Therefore, we 
can define the bound electron number Within a single-centre problem in the whole 
space so as to fulfill the condition of the charge neutrality. In a simple metal, 
the bound electron number 2, is evaluated from the hound electron distribution 
pb(r )  = .:(?IN) by ZB = p b ( y )  dr, that is, 

(3.77) 

and the ionization is obtained by Z, E 2, - Z, with a chemical potential p: 
determined by 

It should be noted that in this definition the bound-state is simply defined by a 
state with E ;  < 0;  as a result, this definition of Z, can be applied only to a ‘simple 
metallic’ system. The simple definition of 2, by (3.77) has many problems to be 
improved: the bound electron number exhibits a discrete change when a hound 
state in a plasma begins to disappear With the increase of density by compression. 
Furthermore, equation (3.75) is rewritten for a liquid metal in another form related 
to the Fnedel sum rule concerning phase shifts 6,(E) at the Fermi energy EF 

ZISII(O) = ] ( n : ( p )  - 4 ) d r  = z&,/p = ; z(2e+ 1)6,(EF) 

where +cT is a compressibility. In general, there is a resonant state [21, 221 which 
shows a strongly localized behaviour around a nucleus, although it belongs to contin- 
uum states. When a significant resonant state, with a large phase shift 6,(EF) a t  the 

(3.79) 2 

1 
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Fermi energy, appears in a liquid metal, the relation (3.79) can not be satisfied if we 
use a simple definition (3.77), since the compressibility is so small that Z,S,,(O) = 0 
in a liquid metal while the Friedel sum becomes large due to a resonant state. This 
fact indicates that some part of the Friedel sum due to a resonant state should be 
taken to be included as the ‘bound’ electron number in addition to ZB defined by 
(3.77), since the following exact relation must be satisfied: 

/(n,b(T)+ns(v)-nE)dr =xf(Ei) + ’ c ( 2 t + 1 ) 6 f ( E F )  
f 

1F 
e i < O  

= ZB t z , n i n T / p .  (3.80) 

In other words, this shows that some part of the conductionelectron distribution, 
which is to be assigned to physical resonant states, should be taken as the ‘bound‘. 
electron distribution n,b(.IN) forming an ‘ion’ in such a way as to fulfill this relation. 
Thus, we are forced to take aupunt of the localized contribution involved in a 
resonant state in the definition of an ‘ion’, when it becomes significant. 

A precise definition of a resonant state [U] can be given by the S-matrix S,( E) 
concerning the wave equation for an electron under the effective potential (3.9) with 
S,(E) = exp(Zi6,(E)). The S-matrix has a branch line along the positive axis, and 
is analytic on a two sheeted Riemann surface except for poles which lie at E = -lentl 
representing bound states and for a infinite number of poles which are on the sheet 
reached via the cut along the positive real axis, the latter are attributed to the resonant 
states E,, = Znt - iy,,,. If a resonant pole has a small ynf compared with Znf, the 
resonant state shows almost the same behaviour to a bound state; hereafter this state 
is referred as a physical resonant state for convenience. More [21] has shown that 
the equilibrium thermal occupation probability n( En[) of a resonant state can 
be given by the expression: 

n(&) = 2 ( 2 t +  l ) R e F ( & )  (3.81) 

I 

with 

(3.82) 

where & means the principal root The expression Re[F(knf)]  is an exten- 
sion of the Fermi distribution f (e)  for a real energy c to a complex-energy state, 
since lim,,,, Re[F(e+i y)] = f (c ) .  Thus we can rewrite (3.80) in terms of the 
generalized Fermi distribution F( E,,) 

/(n,b(T) + n:(r) - n 3 d r  = f ( E i )  + z 2 ( 2 t  t 1) Re[F(&)] 
( *<O t %€res 

= 2, + z&,/p (3.83) 

because of the relation [21] 
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As a result, it is required by (3.83) that the ‘bound‘-electron number 2, in an ion 
should involve a contribution of the physical resonant states ( I Im .&I Q: Re Enf ) 
in addition to the core electrons with e; < 0 in such a way that 

2, f(~;) + 2 ( 2 E f  l)Re[F(f%J . (3.86) 
f , < O  nf€phyr.res. 

Here, the chemical potential &’ is determined by 

(3.87) 

if lp:f(R,)I x 0, where R, is a correlation length defined later. 113 be consistent 
with (3.86), the left-side hand of (3.83) requires that the ‘bound’-elcctron distribution 
n!(rIN) should be taken as composed of the states with E, < 0 and the physical 
resonant states with complex energies Enf, as is written in the form [21] 

- 

Re[F(.UP:f  (7-11 (3.88) &.IN) = f(.,)I4,(.)l2 + 4?rra 
2(2[+ 1 )  

r .<o nf€phys.res. 

where pnC(r) denotes a resonant wavefunction which obeys the wave equation with 
a complex eigenvalue However, it should be kept in mind that a resonant 
wavefunction can not be normalized in the whole space in a usual way because of 
the behaviour in the large distances: Iirnr4- \pnf(r)l+oo. Since the electron-ion 
correlation can be considered to become uncorrelated outside the correlation length 
Rc, the integral in (3.83) are taken to be performed up to this distance R, to treat 
the resonant states. Then, the bound electron number (3.86) becomes equal with 
2, = f C p b ( 7 - ) d r ,  since the resonant functions pnC(r) are known to be almost 
real, normalized and orthogonal functions on a fied intcwal 0 < T < R,, if the 
resonance lifetimes are sufficiently long 1211. At this point an important remark is 
made that the bound electron number given by (3.86) varies continuously when a 
bound state with c, < 0 disappears into the continuum state by the compression 
of a plasma, since the disappearing pole associated with a bound state turns out to 
become a resonant pole at that time. 

In this conncction, Moriarty [24] propased the number of bound electrons retained 
by the ion in a transition metal with 3d-resonant electrons, for example, to be 2, = 

f(e,)+106d(E,)/?r; this definition follows from (3.86) by the approximation 

Re[F(-%dI hfF(Enw)l = p 6d(EF) (for T = 0) (3.89) 

which is justified when widths of other resonant states than the 3d-state are all 
large. Moreover, Moriarty approximated the d-resonant wavefunctions by the local- 
ized wavefunctions (the zeroth-order pseudoatom) obtained by adding the localization 
potential to the single-centre potential (3.9) so as to produce a hound-state like wavc- 
function. In some similar way to Moriarty, resonant wavefunctions are neccssaly to 

n’Erea. 
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be approximated by bound-statelike wavefunctions in order to be actually used in the 
TBB model. However, it may be possible that the tight-binding formulation is gener- 
alized in terms of resonant wavefunctions in spite of their unphysical tail behaviour, 
since the matrix elemen6 of an arbitrary operator between resonant states can be 
defined with use of special technique ([22] p 153 E). 

4. Summary and discussion 

We have formulated a method to treat a non-simple liquid metal and plasma in a 
unified manner including also a neutral liquid as a special case; the RDF, the ionic 
charge and the muffin-tin potential are determined by solving a single-centre problem 
with a bare ion-ion interaction as an input, while the density of states, the bare 
ion-ion interaction and thermodynamic properties are to be obtained as results of 
the multi-centre problem with use of output from the single-centre problem. The 
RDF, gII(v) and gel(?-), are given by (218) with a bare ion-ion interaction (3.53) 
and (219) with an electron-ion interaction (2.22), respectively. Clearly speaking, 
the geI(?-) is the conductionelectron density distribution n:(?-lN) under the effective 
potential (3.99), and the bound electron distribution n,b(?-IN) given by (3.88) provides 
the electronic structure pb(?-) of an ion with the ionic charge determined by (3.86): 
a ‘bound‘ state is defined as a state of a discrete energy level with E ;  < 0 or as 
a physical resonant state of a complex energy with l Imgnl[  << Re.& . Once 
the this single-centre problem is solved, the muffin-tin potential for the multi-centre 
problem is obtained by (3.62) in terms of the DCFS and single-centre quantities; thus, 
the generalized TBB model (3.65) or the GK model (3.50) can determine the core- 
overlap interaction, which yields the bare ion-ion interaction (3.53) to be used in the 
single-centre problem. In this way, the single- and multi-centre problems are coupled 
with each other, and produce a set of integral equations for ion-configurational and 
electronic structures in conjunction with the internal structure of an ion for liquid 
metals or plasmas, in principle. The internal energy of a liquid metal is shown to be 
expressed in terms of single-centre quantities as (3.54) in the multi-centre treatment. 
In our approach, however, it becomes natural to treat the single-centre problem 
independently from the multi-centre problem for a ‘simple metallic’ system, where 
the ion-ion potential is taken to be purely Coulombic, since the core-electron overlap 
is negligible and no significant reonant state appears there. In our formulation, 
the bound electron number Z, is defined by (3.86) in the single-centre problem. 
However, it can be defined also in the multi-centre system in terms of a local density 
of States ni, (e) ,  and two definitions should yield the same result as discussed in 
section 3.3 

ZB= f(~;) t 2 ( 2 l t  l )Re[F(Enf)I  (4.1) 
6 i < O  nL€phys.rer. 

when the single- and multi-centre problems are solved self-consistently. 
We have shown that the effective electron-nucleus interaction (3.9) determined 

by the single-centre treatment can be used as a self-consistent muffin-tin potential 
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(3.62) for the muIti-centre problem. This fact indicates that we need not solve the 
multi-centre problem iteratively to get a self-consistent potential, since it can be ob- 
tained by solving the single-centre problem. With this respcct, we remark that the 
effective electron-nucleus interaction (3.62) is shown to be rewritten approximately 
in the form like (3.72) representing an effective potential for electrons caused by the 
superpit ion of neutral pseudoatoms including the bound electrons [7] as is done 
by the Mattheiss procedure to construct the muffin-tin potential from a free-atom 
potential in the energy band calculation of a solid. Also, it is important to note that 
self-consistent base functions in the TBB method and a self-consistent bound electron 
density nb(?-) in the GK method may be obtained by the use of the effective potential 
(3.62); the kinetic energy difference of the system AT, from that of isolated ions can 
be represented only by the variation of energy levels as described by (3.63) in the TBB 
model, if we use the self-mnsistent base functions determined by this single-centre 
potential (3.62). When we treat a transition metal, for example, the core-overlap 
interaction is described in terms of physical resonant states in our formulation. How- 
ever, they cannot be used as usual base functions in the tight-binding approximation, 
since a resonant wavefunction has a unphysical tail behaviour. There€ore, a resonant 
wavefunction is necessary to be approximated by a bound-state-like wavefunction, as 
was done by several investigators [24, 251, in order to be used for the tight-binding 
model in a usual way. On the contrary, the TBB method may be extended to be 
performed by using resonant wavefunctions as the base functions with the help of 
some procedure such as the complex coordinate method [26]. 

With use of the nucleus-electron model the internal energy of a liquid metal is 
derived as (3.54), which is different from the usual internal energy formula based on 
the pseudopotential theory in that the term NnEw%(Q = O )  representing the core- 
electromnduction-electron interaction in terms of the pseudopotential wb( ?-) = 
w t ( R ) - Z 1 / r  is replaced by Nn;G.?j(Q = 0) in (3.54), the Fourier transform of 
the non-Coulomb part of the bare electron-ion interaction (2.22). It should be 
mentioned that the interaction between conduction- and core-electrons in the core 
region cannot be precisely represented by the pseudopotential tub(?-) in contrast with 
se,(?-) of (2.22) being valid there, since the pseudopotential is appropriate to express 
electron-ion interaction only outside of the core region. Therefore, the core-electron- 
conductionelectron interaction term in the internal energy is not adequately given by 
the pseudopotential wb(r). Because of this difference, the internal energy (3.54) of 
a liquid metal in the nucleus-electron model is rewritten using the compressibility IC+ 

of an electron gas with a different volume energy U, from that of the pseudopotential 
theory 

in the form 

E = $ N n i  / ue'(?-)gl,(?-) dr + $k ,TN + Neion + U, . (4.4) 

Here, the last term of (4.3) with CZ(Q) C e , ( Q ) - P 4 ~ Z , / Q Z  = -pwF(Q) 
remains as uncanceled in contrast with the pseudopotential theory. Recently, Walker 
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and Taylor [27] have shown that the internal energy of a simple metal can not 
be adequately represented by the expression based on the first-principles non-local 
pseudopotential, and the volume energy should be corrected to take a m u n t  of the 
core-electron-conduction-electron interaction; the relation of this correction to the 
last term of (43) is to be investigated in a future work. On the other hand, the 
intemal energy for 'non-simple metallic' system is written with the help of (3.65) in 
the form appropriate to express the bonding energy 

E = $ N n i  /['Jir(T) f %d(")lgii(T)d' + Z b T N  + 

where 

m 

Ubond = (AT,[fiL]) = / ( E - - E S O l ) ) ( n ( , ( € ) ) f ( E ) d €  
0 !€bound -m 

U"P = ~ N n ~ / ~ ~ ~ ( ~ ) g ~ ~ ( ~ ) d r .  (4.7) 

When the ion-ion RDF gI1(.) is approximated by the step function e(.- Rws) 
with the WignerSeitz radius R,,, gi,(r) FZ e(r- R,,), in the effective electron- 
nucleus interaction (3.9) in addition to the approximation CeI(r) % - ~ V : ~ ( V ) ,  the 
effective potential (3.9) reduces to a potential caused by a tixed nucleus at the centre 
of a spherical vacancy in the jellium model 

v$(f) % -2 + /v:e( /r-r ' l ) [ne(Tt)  - np(r ' -RwS)]dr '  

+ Pxc(ne(r)) - r x c ( n 3  . (4.8) 

This jellium-vacancy model is shown to yield a good non-linear pseudopotential 
-CeI(~)/p to give an effective ion-ion interaction (220) in a simple metal [5]. For 
a non-simple liquid, also, the jellium-vacany model may afford to give the non-linear 
pseudopotential and the bound electron distribution (3.88) involving resonant states 
without coupling to the multi-centre problem; these results are to be used as initial 
input data for the coupled problem of single- and multi-centre systems. 

When a bare ion-ion interaction determined by (3.50) becomes a three-body force, 
our formulation may be incorporated in integral equations for a fluid with a three- 
body interaction as was given by many investigators [=]. In treating a liquid metal, 
it is a standard approximation to replace the LFC G(Q) by that of the jellium model 
where the presence of ions are taken to be a uniform positive background: the two 
component nature is neglected in this replacement When the electron temperature 
is increased for electrons to behave as a classical fluids, or when the electronion 
interaction is significant as is a case of a liquid metallic hydrogen, this approximation 
will break down, and an integral equation to determine the DCF C,( T) is necessaly 
to be set up as was done in the previous works [2, 31. 
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Appendix. Proof of (2.1) 

The Hamiltonian of a binary mixture composed of N ions and Ne electrons is written 
as 

f i = K , + ~ , ( R ~ ) + H ~ + ~ , ( i N ~ , R N  1 ('41) 

where 

o=1 i=l 

and KI denotes the kinetic energy of the ions: the ions are taken to be classical 
panicles. The ions can be treated as classical particles, when the thermal wavelength 
X = ( P ~ * / ~ X M ) ' / ~  of ion in a liquid is sufficiently small compared with the average 
interatomic distance a and the characteristic length e of interacting potential of the 
system. Because of [Po, I?,] = 0, the canonical partition function of the ion-elcctron 
mixture is expressed in the {rR}-representation with IrR) E lrl ' . 'rNeR1.  " R N )  
as follows 

QN = Trexp(-pH) 

= j d r N *  d R N  (rRIexp(-pfi)lrR) 

= J d R N  (RIex~[-P(h'~+f~)llR) 

where Tr,Z" refers to a complete set of electronic states with Ne= 2 , N .  Here, we 
used the relation for classical particles, that is, for a fluid with X<a and X < t  (see 
1291, for example) 
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Thus, the grand partition function for this homogeneous mixture is given by 

E[O] - -/dRNexp(-Pqr(RN)) Z N  

N !  N=O 

with a fugacity z = exp(-PpI)/Xs, under the condition of the charge neutrality, 
( f i e )  = .ZI(fi), being fulfilled. Here, let us treat an inhomogeneous fluid created by 
adding an ion at Z = R ~ + ~  to the ion-elsctron mixture with additional Z, electrons 
to keep the system neutral; then, the grand partition function of this inhomogeneous 
mixture is associated with that of the homogeneous system Z[O] as shown below 

Due to the above equation, we can prove that the electron-ion RDF geI( lr  - 21) 
becomes identical with the inhomogeneous electron-density distribution ne(rlI)/nz 
caused by the ion fixed at z = RNtl as follows 

In a similar manner, we can prove the relation gII(r) = nI(~l I ) /n i  for the ion- 
electron mixture with a fixed ion at the origin. 
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